
NCNA 2020-21 Solution Slides

NCNA Judges

NCNA Judges NCNA 2020-21 Solution Slides 1 / 28

Problem Set Developers

Bryce Sandlund (NCNA Chief Judge)

Antonio Molina

Finn Lidbetter

Anindya Das

Nalin Bhardwaj

Tomas Rokicki

Marc Furon (SoCal)

Ed Skochinski (SoCal)

Ronqi Qiu (SoCal)

Bob Logan (SoCal)

Nalin Bhardwaj

Yinzhan Xu

Pasha Kazatsker

NCNA Judges NCNA 2020-21 Solution Slides 2 / 28

E - Curve Speed

Problem

Given R and S , evaluate the equation:

V =
√

(R ∗ (S + .16))/.067.

Solution

Straightforward.

Pitfalls

Not rounding properly.

Not reading to end-of-input properly.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 3 / 28

E - Curve Speed

Problem

Given R and S , evaluate the equation:

V =
√

(R ∗ (S + .16))/.067.

Solution

Straightforward.

Pitfalls

Not rounding properly.

Not reading to end-of-input properly.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 3 / 28

E - Curve Speed

Problem

Given R and S , evaluate the equation:

V =
√

(R ∗ (S + .16))/.067.

Solution

Straightforward.

Pitfalls

Not rounding properly.

Not reading to end-of-input properly.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 3 / 28

E - Curve Speed

Problem

Given R and S , evaluate the equation:

V =
√

(R ∗ (S + .16))/.067.

Solution

Straightforward.

Pitfalls

Not rounding properly.

Not reading to end-of-input properly.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 3 / 28

E - Curve Speed

Java Code

public static void main(String[] args) {

Scanner scan = new Scanner(System.in);

while (scan.hasNext()) {

double R = scan.nextDouble();

double S = scan.nextDouble();

double V = Math.sqrt(R * (S + 0.16) / 0.067);

long ans = Math.round(V);

System.out.println(ans);

}

}

Statistics: 235 submissions, 77 accepted.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 4 / 28

E - Curve Speed

Java Code

public static void main(String[] args) {

Scanner scan = new Scanner(System.in);

while (scan.hasNext()) {

double R = scan.nextDouble();

double S = scan.nextDouble();

double V = Math.sqrt(R * (S + 0.16) / 0.067);

long ans = Math.round(V);

System.out.println(ans);

}

}

Statistics: 235 submissions, 77 accepted.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 4 / 28

K - ICPC Record Matching

Problem

Given two lists of names and emails, determine which records do not
match on either first name and last name or email with any record in the
other list.

Solution

Straightforward.

Pitfalls

Missing matches.

TLE on some O(n2) solutions (sorry).

Statistics: 248 submissions, 27 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 5 / 28

K - ICPC Record Matching

Problem

Given two lists of names and emails, determine which records do not
match on either first name and last name or email with any record in the
other list.

Solution

Straightforward.

Pitfalls

Missing matches.

TLE on some O(n2) solutions (sorry).

Statistics: 248 submissions, 27 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 5 / 28

K - ICPC Record Matching

Problem

Given two lists of names and emails, determine which records do not
match on either first name and last name or email with any record in the
other list.

Solution

Straightforward.

Pitfalls

Missing matches.

TLE on some O(n2) solutions (sorry).

Statistics: 248 submissions, 27 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 5 / 28

K - ICPC Record Matching

Problem

Given two lists of names and emails, determine which records do not
match on either first name and last name or email with any record in the
other list.

Solution

Straightforward.

Pitfalls

Missing matches.

TLE on some O(n2) solutions (sorry).

Statistics: 248 submissions, 27 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 5 / 28

K - ICPC Record Matching

Problem

Given two lists of names and emails, determine which records do not
match on either first name and last name or email with any record in the
other list.

Solution

Straightforward.

Pitfalls

Missing matches.

TLE on some O(n2) solutions (sorry).

Statistics: 248 submissions, 27 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 5 / 28

H - Digital Speedometer

Problem

Given a list of speeds, round them according to the given rules.

Solution

Straightforward.

Pitfalls

Finding the “most recent preceding value for s outside of range
[i + tf , i + tr]” is prone to bugs. You are better off iterating
backwards to ensure you do it correctly. This is worst-case O(n2),
though with the input bounds this should be fine. I also didn’t create
any cases to force O(n2) runtime on look-back solutions (oops).

Confusion on inclusivity of “falls between” (it doesn’t matter since tf
and tr are of the form 0.x5, where x ∈ {0, . . . , 9}, and speed is given
to the first decimal place.).

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 6 / 28

H - Digital Speedometer

Problem

Given a list of speeds, round them according to the given rules.

Solution

Straightforward.

Pitfalls

Finding the “most recent preceding value for s outside of range
[i + tf , i + tr]” is prone to bugs. You are better off iterating
backwards to ensure you do it correctly. This is worst-case O(n2),
though with the input bounds this should be fine. I also didn’t create
any cases to force O(n2) runtime on look-back solutions (oops).

Confusion on inclusivity of “falls between” (it doesn’t matter since tf
and tr are of the form 0.x5, where x ∈ {0, . . . , 9}, and speed is given
to the first decimal place.).

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 6 / 28

H - Digital Speedometer

Problem

Given a list of speeds, round them according to the given rules.

Solution

Straightforward.

Pitfalls

Finding the “most recent preceding value for s outside of range
[i + tf , i + tr]” is prone to bugs. You are better off iterating
backwards to ensure you do it correctly. This is worst-case O(n2),
though with the input bounds this should be fine. I also didn’t create
any cases to force O(n2) runtime on look-back solutions (oops).

Confusion on inclusivity of “falls between” (it doesn’t matter since tf
and tr are of the form 0.x5, where x ∈ {0, . . . , 9}, and speed is given
to the first decimal place.).

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 6 / 28

H - Digital Speedometer

Problem

Given a list of speeds, round them according to the given rules.

Solution

Straightforward.

Pitfalls

Finding the “most recent preceding value for s outside of range
[i + tf , i + tr]” is prone to bugs. You are better off iterating
backwards to ensure you do it correctly. This is worst-case O(n2),
though with the input bounds this should be fine. I also didn’t create
any cases to force O(n2) runtime on look-back solutions (oops).

Confusion on inclusivity of “falls between” (it doesn’t matter since tf
and tr are of the form 0.x5, where x ∈ {0, . . . , 9}, and speed is given
to the first decimal place.).

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 6 / 28

H - Digital Speedometer

Pitfalls, cont.

It is possible tf > 0.5 or tr < 0.5, so avoid library rounding.

Statistics: 339 submissions, 40 accepted.

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 7 / 28

H - Digital Speedometer

Pitfalls, cont.

It is possible tf > 0.5 or tr < 0.5, so avoid library rounding.

Statistics: 339 submissions, 40 accepted.

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 7 / 28

D - Substring Characters

Problem

For each string in input, determine the number of unique proper
contiguous substrings that have the same set of characters as the input
string and contain no proper substrings also containing the same set of
characters as the input string.

Solution

One straightforward solution:

1 Given a starting index i , find the smallest j such that the substring
from i to j has all unique characters; call it ending(i).

2 Add into a set/hashset all proper substrings [i , j] where
ending(i + 1) 6= ending(i).

3 Report the number of strings in the set.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 8 / 28

D - Substring Characters

Problem

For each string in input, determine the number of unique proper
contiguous substrings that have the same set of characters as the input
string and contain no proper substrings also containing the same set of
characters as the input string.

Solution

One straightforward solution:

1 Given a starting index i , find the smallest j such that the substring
from i to j has all unique characters; call it ending(i).

2 Add into a set/hashset all proper substrings [i , j] where
ending(i + 1) 6= ending(i).

3 Report the number of strings in the set.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 8 / 28

D - Substring Characters

Problem

For each string in input, determine the number of unique proper
contiguous substrings that have the same set of characters as the input
string and contain no proper substrings also containing the same set of
characters as the input string.

Solution

One straightforward solution:

1 Given a starting index i , find the smallest j such that the substring
from i to j has all unique characters; call it ending(i).

2 Add into a set/hashset all proper substrings [i , j] where
ending(i + 1) 6= ending(i).

3 Report the number of strings in the set.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 8 / 28

D - Substring Characters

Problem

For each string in input, determine the number of unique proper
contiguous substrings that have the same set of characters as the input
string and contain no proper substrings also containing the same set of
characters as the input string.

Solution

One straightforward solution:

1 Given a starting index i , find the smallest j such that the substring
from i to j has all unique characters; call it ending(i).

2 Add into a set/hashset all proper substrings [i , j] where
ending(i + 1) 6= ending(i).

3 Report the number of strings in the set.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 8 / 28

D - Substring Characters

Pitfalls

I/O. Again. Many submissions did not pass sample data.

Statistics: 105 submissions, 36 accepted.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 9 / 28

D - Substring Characters

Pitfalls

I/O. Again. Many submissions did not pass sample data.

Statistics: 105 submissions, 36 accepted.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 9 / 28

A - LogDB

Problem

Given a set of “facts”, resembling function calls, and a set of queries,
determine how many facts are matched by each query, following the stated
rules for matching.

Solution

Given a query, check each fact to determine if it matches.

Pitfalls

Inproper handling of spaces between tokens. Testcase handmade2.in:

fact(a,b,c)

fact (a , b,c)

fact(_,_,_) // should be 2

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 10 / 28

A - LogDB

Problem

Given a set of “facts”, resembling function calls, and a set of queries,
determine how many facts are matched by each query, following the stated
rules for matching.

Solution

Given a query, check each fact to determine if it matches.

Pitfalls

Inproper handling of spaces between tokens. Testcase handmade2.in:

fact(a,b,c)

fact (a , b,c)

fact(_,_,_) // should be 2

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 10 / 28

A - LogDB

Problem

Given a set of “facts”, resembling function calls, and a set of queries,
determine how many facts are matched by each query, following the stated
rules for matching.

Solution

Given a query, check each fact to determine if it matches.

Pitfalls

Inproper handling of spaces between tokens. Testcase handmade2.in:

fact(a,b,c)

fact (a , b,c)

fact(_,_,_) // should be 2

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 10 / 28

A - LogDB

Pitfalls

Inproper logic. Testcase handmade1.in:

test(arg1, arg1)

test(arg1, arg2)

test(__arg2, __arg2) // 1

test(__arg1, __arg2) // 2

test2(_, __) // 0

test(_, __) // 2

test(_, __) // 2

Statistics: 96 submissions, 24 accepted.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 11 / 28

A - LogDB

Pitfalls

Inproper logic. Testcase handmade1.in:

test(arg1, arg1)

test(arg1, arg2)

test(__arg2, __arg2) // 1

test(__arg1, __arg2) // 2

test2(_, __) // 0

test(_, __) // 2

test(_, __) // 2

Statistics: 96 submissions, 24 accepted.

Problem Author: Bob Logan NCNA 2020-21 Solution Slides 11 / 28

J - Ada Loveslaces

Problem

Given specifications for a set of points on a 2D plane representing shoelace
holes, determine the number of valid symmetric shoelace patterns that
result in shoelace lengths between a lower bound fmin and upper bound
fmax .

Solution

The first task is to get an upper bound on the number of possible
valid lacing patterns.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 12 / 28

J - Ada Loveslaces

Problem

Given specifications for a set of points on a 2D plane representing shoelace
holes, determine the number of valid symmetric shoelace patterns that
result in shoelace lengths between a lower bound fmin and upper bound
fmax .

Solution

The first task is to get an upper bound on the number of possible
valid lacing patterns.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 12 / 28

J - Ada Loveslaces

Since hole 0 must go to 1 or 1 to 0, and we must start and end at 2N − 2
and 2N − 1, we can figure out the pattern from 2N − 2 to 0 or 1, then the
rest of the holes are a reflection.

We can only choose one of {2, 3}, {4, 5}, . . . , {2N − 4, 2N − 3} on the way
from 2N − 2 to 0 or 1 so that we may complete the reflection.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 13 / 28

J - Ada Loveslaces

Since hole 0 must go to 1 or 1 to 0, and we must start and end at 2N − 2
and 2N − 1, we can figure out the pattern from 2N − 2 to 0 or 1, then the
rest of the holes are a reflection.

We can only choose one of {2, 3}, {4, 5}, . . . , {2N − 4, 2N − 3} on the way
from 2N − 2 to 0 or 1 so that we may complete the reflection.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 13 / 28

J - Ada Loveslaces

Solution

A loose upper bound can be determined as follows. Consider the pattern
between 2N − 2 and whichever of 0 or 1 the lace goes through first.

Of each pair {0, 1}, {2, 3}, . . . , {2N − 4, 2N − 3} the lace goes
through either the left hole, the right hole, or neither hole (for {0, 1}
it must go through either the left or right hole).

We can bound the number of possible orders of pairs the lace travels
through at (N − 2)!.

Thus we get a loose upper bound of 3N−1 · (N − 2)!. With N = 9,
this is ≈ 33 000 000.

Tighter upper bounds can show the number of valid patterns is more
like 30 000, but the loose bound should suffice to show a brute force
solution is fast enough.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 14 / 28

J - Ada Loveslaces

Solution

A loose upper bound can be determined as follows. Consider the pattern
between 2N − 2 and whichever of 0 or 1 the lace goes through first.

Of each pair {0, 1}, {2, 3}, . . . , {2N − 4, 2N − 3} the lace goes
through either the left hole, the right hole, or neither hole (for {0, 1}
it must go through either the left or right hole).

We can bound the number of possible orders of pairs the lace travels
through at (N − 2)!.

Thus we get a loose upper bound of 3N−1 · (N − 2)!. With N = 9,
this is ≈ 33 000 000.

Tighter upper bounds can show the number of valid patterns is more
like 30 000, but the loose bound should suffice to show a brute force
solution is fast enough.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 14 / 28

J - Ada Loveslaces

Solution

A loose upper bound can be determined as follows. Consider the pattern
between 2N − 2 and whichever of 0 or 1 the lace goes through first.

Of each pair {0, 1}, {2, 3}, . . . , {2N − 4, 2N − 3} the lace goes
through either the left hole, the right hole, or neither hole (for {0, 1}
it must go through either the left or right hole).

We can bound the number of possible orders of pairs the lace travels
through at (N − 2)!.

Thus we get a loose upper bound of 3N−1 · (N − 2)!. With N = 9,
this is ≈ 33 000 000.

Tighter upper bounds can show the number of valid patterns is more
like 30 000, but the loose bound should suffice to show a brute force
solution is fast enough.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 14 / 28

J - Ada Loveslaces

Solution

A loose upper bound can be determined as follows. Consider the pattern
between 2N − 2 and whichever of 0 or 1 the lace goes through first.

Of each pair {0, 1}, {2, 3}, . . . , {2N − 4, 2N − 3} the lace goes
through either the left hole, the right hole, or neither hole (for {0, 1}
it must go through either the left or right hole).

We can bound the number of possible orders of pairs the lace travels
through at (N − 2)!.

Thus we get a loose upper bound of 3N−1 · (N − 2)!. With N = 9,
this is ≈ 33 000 000.

Tighter upper bounds can show the number of valid patterns is more
like 30 000, but the loose bound should suffice to show a brute force
solution is fast enough.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 14 / 28

J - Ada Loveslaces

Final Solution

Brute force all valid patterns, then count how many patterns result in
shoelace length between fmin and fmax .

Pitfalls

Recomputing patterns for each shoelace length rather than storing them.
In a slow language this can TLE on big cases.

Statistics: 41 submissions, 6 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 15 / 28

J - Ada Loveslaces

Final Solution

Brute force all valid patterns, then count how many patterns result in
shoelace length between fmin and fmax .

Pitfalls

Recomputing patterns for each shoelace length rather than storing them.
In a slow language this can TLE on big cases.

Statistics: 41 submissions, 6 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 15 / 28

J - Ada Loveslaces

Final Solution

Brute force all valid patterns, then count how many patterns result in
shoelace length between fmin and fmax .

Pitfalls

Recomputing patterns for each shoelace length rather than storing them.
In a slow language this can TLE on big cases.

Statistics: 41 submissions, 6 accepted.

Problem Author: Marc Furon NCNA 2020-21 Solution Slides 15 / 28

F - Agamemnon’s Odyssey

Problem

Given a tree, find the value of a maximum value path that visits each edge
at most k times, where the value of a path is the weight of every distinct
edge in the path.

Solution

The first observation is to see that since the graph is a tree, if k ≥ 2,
we can take all edges, since it is always possible to visit every edge of
a tree while visiting no edge more than twice; see for example:
https://en.wikipedia.org/wiki/Maze_solving_algorithm#

Wall_follower.

Otherwise, if k = 2, we are looking for the longest path in a weighted
tree, also known as the diameter of the tree.

Problem Author: Nalin Bhardwaj NCNA 2020-21 Solution Slides 16 / 28

https://en.wikipedia.org/wiki/Maze_solving_algorithm#Wall_follower
https://en.wikipedia.org/wiki/Maze_solving_algorithm#Wall_follower

F - Agamemnon’s Odyssey

Problem

Given a tree, find the value of a maximum value path that visits each edge
at most k times, where the value of a path is the weight of every distinct
edge in the path.

Solution

The first observation is to see that since the graph is a tree, if k ≥ 2,
we can take all edges, since it is always possible to visit every edge of
a tree while visiting no edge more than twice; see for example:
https://en.wikipedia.org/wiki/Maze_solving_algorithm#

Wall_follower.

Otherwise, if k = 2, we are looking for the longest path in a weighted
tree, also known as the diameter of the tree.

Problem Author: Nalin Bhardwaj NCNA 2020-21 Solution Slides 16 / 28

https://en.wikipedia.org/wiki/Maze_solving_algorithm#Wall_follower
https://en.wikipedia.org/wiki/Maze_solving_algorithm#Wall_follower

F - Agamemnon’s Odyssey

Problem

Given a tree, find the value of a maximum value path that visits each edge
at most k times, where the value of a path is the weight of every distinct
edge in the path.

Solution

The first observation is to see that since the graph is a tree, if k ≥ 2,
we can take all edges, since it is always possible to visit every edge of
a tree while visiting no edge more than twice; see for example:
https://en.wikipedia.org/wiki/Maze_solving_algorithm#

Wall_follower.

Otherwise, if k = 2, we are looking for the longest path in a weighted
tree, also known as the diameter of the tree.

Problem Author: Nalin Bhardwaj NCNA 2020-21 Solution Slides 16 / 28

https://en.wikipedia.org/wiki/Maze_solving_algorithm#Wall_follower
https://en.wikipedia.org/wiki/Maze_solving_algorithm#Wall_follower

F - Agamemnon’s Odyssey

Solution

This is a classic problem; solutions can be found online. Two are:

1 Run a Dijkstra (DFS) from a node u to find the farthest away node v .
Run dijkstra again from v to find the farthest away node t. The path
from v to t is the longest in the tree (not too hard to prove yourself!).

2 Root the tree arbitrarily, and run a dynamic program to find the
maximum length path. Details of which are also straightforward; try
yourself or consult the internet.

Statistics: 22 submissions, 6 accepted.

Problem Author: Nalin Bhardwaj NCNA 2020-21 Solution Slides 17 / 28

F - Agamemnon’s Odyssey

Solution

This is a classic problem; solutions can be found online. Two are:

1 Run a Dijkstra (DFS) from a node u to find the farthest away node v .
Run dijkstra again from v to find the farthest away node t. The path
from v to t is the longest in the tree (not too hard to prove yourself!).

2 Root the tree arbitrarily, and run a dynamic program to find the
maximum length path. Details of which are also straightforward; try
yourself or consult the internet.

Statistics: 22 submissions, 6 accepted.

Problem Author: Nalin Bhardwaj NCNA 2020-21 Solution Slides 17 / 28

F - Agamemnon’s Odyssey

Solution

This is a classic problem; solutions can be found online. Two are:

1 Run a Dijkstra (DFS) from a node u to find the farthest away node v .
Run dijkstra again from v to find the farthest away node t. The path
from v to t is the longest in the tree (not too hard to prove yourself!).

2 Root the tree arbitrarily, and run a dynamic program to find the
maximum length path. Details of which are also straightforward; try
yourself or consult the internet.

Statistics: 22 submissions, 6 accepted.

Problem Author: Nalin Bhardwaj NCNA 2020-21 Solution Slides 17 / 28

C - Redundant Binary Notation

Problem

Given a number N ≤ 1016 and t ≤ 100, determine the number of
representations N has in a form of binary where each digit can be 0, 1, . . .,
or t.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 18 / 28

Solution

Consider the possible length-three prefixes to valid representations of N
with t = 2. Here they are listed from smallest to largest, with equal
representations on the same line.

111

110 022 102

101 021

100 012 020

011

010 002

001

000

How many can be valid prefixes? The binary notation takes exactly one.
Because we can represent larger values with less digits using digit 2, we
could also take the line below it. But we can’t take two lines below it! If
you fill the remainder of the digits with 2’s, the value represented will be
less than the binary representation prefix with 0’s for the remaining digits.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 19 / 28

Solution

Consider the possible length-three prefixes to valid representations of N
with t = 2. Here they are listed from smallest to largest, with equal
representations on the same line.

111

110 022 102

101 021

100 012 020

011

010 002

001

000

How many can be valid prefixes? The binary notation takes exactly one.
Because we can represent larger values with less digits using digit 2, we
could also take the line below it. But we can’t take two lines below it! If
you fill the remainder of the digits with 2’s, the value represented will be
less than the binary representation prefix with 0’s for the remaining digits.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 19 / 28

Solution

Example: say the first three digits of N in binary starts as 010. Then
we can also potentially represent N starting with 001, since
00122 . . . 2 = 002022 . . . 2 = 010111 . . . 0, which is only one less than
the maximum number representable starting with 010 in binary.

However, if we start 000, then even if all remaining digits are 2, the
maximum number we can represent is
00022 . . . 2 = 001022 . . . 2 = 00111 . . . 0, which is less than any binary
number starting with 010.

This is true if we list all the prefixes of any length! Furthermore,
generalizing to general t instead of 2, we can show that less than t
lines below the binary representation will allow a valid representation.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 20 / 28

Solution

Example: say the first three digits of N in binary starts as 010. Then
we can also potentially represent N starting with 001, since
00122 . . . 2 = 002022 . . . 2 = 010111 . . . 0, which is only one less than
the maximum number representable starting with 010 in binary.

However, if we start 000, then even if all remaining digits are 2, the
maximum number we can represent is
00022 . . . 2 = 001022 . . . 2 = 00111 . . . 0, which is less than any binary
number starting with 010.

This is true if we list all the prefixes of any length! Furthermore,
generalizing to general t instead of 2, we can show that less than t
lines below the binary representation will allow a valid representation.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 20 / 28

Solution

Example: say the first three digits of N in binary starts as 010. Then
we can also potentially represent N starting with 001, since
00122 . . . 2 = 002022 . . . 2 = 010111 . . . 0, which is only one less than
the maximum number representable starting with 010 in binary.

However, if we start 000, then even if all remaining digits are 2, the
maximum number we can represent is
00022 . . . 2 = 001022 . . . 2 = 00111 . . . 0, which is less than any binary
number starting with 010.

This is true if we list all the prefixes of any length! Furthermore,
generalizing to general t instead of 2, we can show that less than t
lines below the binary representation will allow a valid representation.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 20 / 28

C - Redundant Binary Notation

Final Solution

We can brute force the start of the number, counting the number of
ways to fill the rest in.

Let

Ways(i,d) := number of ways to represent i in d digits.

We can try all digits 0, . . . , t in the leading position d and then
recurse on the remaining number. We prune the DP by returning 0 if
i > t(2d − 1) or i < 0.

The previous analysis shows there will be at most O(t logN) explored
states of the DP when called with Ways(N,blog2(N)c+ 1).

Statistics: 12 submissions, 6 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 21 / 28

C - Redundant Binary Notation

Final Solution

We can brute force the start of the number, counting the number of
ways to fill the rest in.

Let

Ways(i,d) := number of ways to represent i in d digits.

We can try all digits 0, . . . , t in the leading position d and then
recurse on the remaining number. We prune the DP by returning 0 if
i > t(2d − 1) or i < 0.

The previous analysis shows there will be at most O(t logN) explored
states of the DP when called with Ways(N,blog2(N)c+ 1).

Statistics: 12 submissions, 6 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 21 / 28

C - Redundant Binary Notation

Final Solution

We can brute force the start of the number, counting the number of
ways to fill the rest in.

Let

Ways(i,d) := number of ways to represent i in d digits.

We can try all digits 0, . . . , t in the leading position d and then
recurse on the remaining number. We prune the DP by returning 0 if
i > t(2d − 1) or i < 0.

The previous analysis shows there will be at most O(t logN) explored
states of the DP when called with Ways(N,blog2(N)c+ 1).

Statistics: 12 submissions, 6 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 21 / 28

C - Redundant Binary Notation

Final Solution

We can brute force the start of the number, counting the number of
ways to fill the rest in.

Let

Ways(i,d) := number of ways to represent i in d digits.

We can try all digits 0, . . . , t in the leading position d and then
recurse on the remaining number. We prune the DP by returning 0 if
i > t(2d − 1) or i < 0.

The previous analysis shows there will be at most O(t logN) explored
states of the DP when called with Ways(N,blog2(N)c+ 1).

Statistics: 12 submissions, 6 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 21 / 28

I - Staggering to the Finish

Problem

Given parameters of a track, determine the staggered starting locations of
a D-meter race.

Solution

Draw triangles and use trigonometry to determine the locations, according
to spec.

Statistics: 41 submissions, 12 accepted.

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 22 / 28

I - Staggering to the Finish

Problem

Given parameters of a track, determine the staggered starting locations of
a D-meter race.

Solution

Draw triangles and use trigonometry to determine the locations, according
to spec.

Statistics: 41 submissions, 12 accepted.

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 22 / 28

I - Staggering to the Finish

Problem

Given parameters of a track, determine the staggered starting locations of
a D-meter race.

Solution

Draw triangles and use trigonometry to determine the locations, according
to spec.

Statistics: 41 submissions, 12 accepted.

Problem Author: Ed Skochinski NCNA 2020-21 Solution Slides 22 / 28

B - Ride-Hailing

Problem

Given a schedule of k trips that must be completed in a graph, determine
the minimum number of drivers necessary to complete all trips.

Solution

This is a classic matching problem. The solution is to match trips to
trips.

A trip i can be matched to trip j if it is possible for a driver to
complete trip i , then arrive at the start of trip j at or before the start
of trip j .

A maximum matching determines the number of drivers necessary. A
driver can start at any unmatched trip, then follow the chain of
matchings for next trips. The answer is thus k minus the maximum
matching.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 23 / 28

B - Ride-Hailing

Problem

Given a schedule of k trips that must be completed in a graph, determine
the minimum number of drivers necessary to complete all trips.

Solution

This is a classic matching problem. The solution is to match trips to
trips.

A trip i can be matched to trip j if it is possible for a driver to
complete trip i , then arrive at the start of trip j at or before the start
of trip j .

A maximum matching determines the number of drivers necessary. A
driver can start at any unmatched trip, then follow the chain of
matchings for next trips. The answer is thus k minus the maximum
matching.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 23 / 28

B - Ride-Hailing

Problem

Given a schedule of k trips that must be completed in a graph, determine
the minimum number of drivers necessary to complete all trips.

Solution

This is a classic matching problem. The solution is to match trips to
trips.

A trip i can be matched to trip j if it is possible for a driver to
complete trip i , then arrive at the start of trip j at or before the start
of trip j .

A maximum matching determines the number of drivers necessary. A
driver can start at any unmatched trip, then follow the chain of
matchings for next trips. The answer is thus k minus the maximum
matching.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 23 / 28

B - Ride-Hailing

Problem

Given a schedule of k trips that must be completed in a graph, determine
the minimum number of drivers necessary to complete all trips.

Solution

This is a classic matching problem. The solution is to match trips to
trips.

A trip i can be matched to trip j if it is possible for a driver to
complete trip i , then arrive at the start of trip j at or before the start
of trip j .

A maximum matching determines the number of drivers necessary. A
driver can start at any unmatched trip, then follow the chain of
matchings for next trips. The answer is thus k minus the maximum
matching.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 23 / 28

B - Ride-Hailing

Comments

The small number of locations can be exploited to create a smaller
general maximum flow problem.

Hopcroft-Karp can also be used instead of Ford-Fulkerson as the
matching algorithm for improved speed.

Unfortunately, we were unable to separate solutions based on graph
representation and flow algorithm (without disadvantaging Java), so
the time limits are set to accept them all.

Statistics: 20 submissions, 3 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 24 / 28

B - Ride-Hailing

Comments

The small number of locations can be exploited to create a smaller
general maximum flow problem.

Hopcroft-Karp can also be used instead of Ford-Fulkerson as the
matching algorithm for improved speed.

Unfortunately, we were unable to separate solutions based on graph
representation and flow algorithm (without disadvantaging Java), so
the time limits are set to accept them all.

Statistics: 20 submissions, 3 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 24 / 28

B - Ride-Hailing

Comments

The small number of locations can be exploited to create a smaller
general maximum flow problem.

Hopcroft-Karp can also be used instead of Ford-Fulkerson as the
matching algorithm for improved speed.

Unfortunately, we were unable to separate solutions based on graph
representation and flow algorithm (without disadvantaging Java), so
the time limits are set to accept them all.

Statistics: 20 submissions, 3 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 24 / 28

B - Ride-Hailing

Comments

The small number of locations can be exploited to create a smaller
general maximum flow problem.

Hopcroft-Karp can also be used instead of Ford-Fulkerson as the
matching algorithm for improved speed.

Unfortunately, we were unable to separate solutions based on graph
representation and flow algorithm (without disadvantaging Java), so
the time limits are set to accept them all.

Statistics: 20 submissions, 3 accepted.

Problem Author: Bryce Sandlund NCNA 2020-21 Solution Slides 24 / 28

L - Codenames

Problem

Given the board of a codenames game and a list of possible hint words
with which board words they are associated, determine the probability of
winning the game, given that guessers pick uniformly at random from
available board words associated with the given hint word.

Solution

Straightforward subset DP to evaluate all possible game states.

Let DP(board,turn,hint,guesses) := probability player whose
turn it is wins, given the live cards, the hint word, and how many
guesses remain.

Board is an N-bit bitmask where a 1 represents a live card.

The recurrence is as follows: if this is a guessing state (guesses> 0),
then we make a uniformly-random choice among live cards associated
with hint, then recurse on the remaining state.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 25 / 28

L - Codenames

Problem

Given the board of a codenames game and a list of possible hint words
with which board words they are associated, determine the probability of
winning the game, given that guessers pick uniformly at random from
available board words associated with the given hint word.

Solution

Straightforward subset DP to evaluate all possible game states.

Let DP(board,turn,hint,guesses) := probability player whose
turn it is wins, given the live cards, the hint word, and how many
guesses remain.

Board is an N-bit bitmask where a 1 represents a live card.

The recurrence is as follows: if this is a guessing state (guesses> 0),
then we make a uniformly-random choice among live cards associated
with hint, then recurse on the remaining state.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 25 / 28

L - Codenames

Problem

Given the board of a codenames game and a list of possible hint words
with which board words they are associated, determine the probability of
winning the game, given that guessers pick uniformly at random from
available board words associated with the given hint word.

Solution

Straightforward subset DP to evaluate all possible game states.

Let DP(board,turn,hint,guesses) := probability player whose
turn it is wins, given the live cards, the hint word, and how many
guesses remain.

Board is an N-bit bitmask where a 1 represents a live card.

The recurrence is as follows: if this is a guessing state (guesses> 0),
then we make a uniformly-random choice among live cards associated
with hint, then recurse on the remaining state.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 25 / 28

L - Codenames

Problem

Given the board of a codenames game and a list of possible hint words
with which board words they are associated, determine the probability of
winning the game, given that guessers pick uniformly at random from
available board words associated with the given hint word.

Solution

Straightforward subset DP to evaluate all possible game states.

Let DP(board,turn,hint,guesses) := probability player whose
turn it is wins, given the live cards, the hint word, and how many
guesses remain.

Board is an N-bit bitmask where a 1 represents a live card.

The recurrence is as follows: if this is a guessing state (guesses> 0),
then we make a uniformly-random choice among live cards associated
with hint, then recurse on the remaining state.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 25 / 28

L - Codenames

Problem

Given the board of a codenames game and a list of possible hint words
with which board words they are associated, determine the probability of
winning the game, given that guessers pick uniformly at random from
available board words associated with the given hint word.

Solution

Straightforward subset DP to evaluate all possible game states.

Let DP(board,turn,hint,guesses) := probability player whose
turn it is wins, given the live cards, the hint word, and how many
guesses remain.

Board is an N-bit bitmask where a 1 represents a live card.

The recurrence is as follows: if this is a guessing state (guesses> 0),
then we make a uniformly-random choice among live cards associated
with hint, then recurse on the remaining state.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 25 / 28

L - Codenames

Solution

Otherwise, it is a clue-giving state, and we consider all possible
remaining hint words and all possible values for K , taking the
maximum.

Number of states: 2N · 2 ·M · N. Time to compute each state:

O(N) on a guessing state. (2N · 2 ·M · N guessing states.)
O(MN) on a clue-giving state. (2N · 2 clue-giving states.)

Final complexity: O(2N ·M · N2) ≈ 700 000 000 iterations, which is a
lot, but bit operations are fast and a 15 second time limit generous.

Statistics: 45 submissions, 1 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 26 / 28

L - Codenames

Solution

Otherwise, it is a clue-giving state, and we consider all possible
remaining hint words and all possible values for K , taking the
maximum.

Number of states: 2N · 2 ·M · N. Time to compute each state:

O(N) on a guessing state. (2N · 2 ·M · N guessing states.)
O(MN) on a clue-giving state. (2N · 2 clue-giving states.)

Final complexity: O(2N ·M · N2) ≈ 700 000 000 iterations, which is a
lot, but bit operations are fast and a 15 second time limit generous.

Statistics: 45 submissions, 1 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 26 / 28

L - Codenames

Solution

Otherwise, it is a clue-giving state, and we consider all possible
remaining hint words and all possible values for K , taking the
maximum.

Number of states: 2N · 2 ·M · N. Time to compute each state:

O(N) on a guessing state. (2N · 2 ·M · N guessing states.)

O(MN) on a clue-giving state. (2N · 2 clue-giving states.)

Final complexity: O(2N ·M · N2) ≈ 700 000 000 iterations, which is a
lot, but bit operations are fast and a 15 second time limit generous.

Statistics: 45 submissions, 1 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 26 / 28

L - Codenames

Solution

Otherwise, it is a clue-giving state, and we consider all possible
remaining hint words and all possible values for K , taking the
maximum.

Number of states: 2N · 2 ·M · N. Time to compute each state:

O(N) on a guessing state. (2N · 2 ·M · N guessing states.)
O(MN) on a clue-giving state. (2N · 2 clue-giving states.)

Final complexity: O(2N ·M · N2) ≈ 700 000 000 iterations, which is a
lot, but bit operations are fast and a 15 second time limit generous.

Statistics: 45 submissions, 1 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 26 / 28

L - Codenames

Solution

Otherwise, it is a clue-giving state, and we consider all possible
remaining hint words and all possible values for K , taking the
maximum.

Number of states: 2N · 2 ·M · N. Time to compute each state:

O(N) on a guessing state. (2N · 2 ·M · N guessing states.)
O(MN) on a clue-giving state. (2N · 2 clue-giving states.)

Final complexity: O(2N ·M · N2) ≈ 700 000 000 iterations, which is a
lot, but bit operations are fast and a 15 second time limit generous.

Statistics: 45 submissions, 1 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 26 / 28

L - Codenames

Solution

Otherwise, it is a clue-giving state, and we consider all possible
remaining hint words and all possible values for K , taking the
maximum.

Number of states: 2N · 2 ·M · N. Time to compute each state:

O(N) on a guessing state. (2N · 2 ·M · N guessing states.)
O(MN) on a clue-giving state. (2N · 2 clue-giving states.)

Final complexity: O(2N ·M · N2) ≈ 700 000 000 iterations, which is a
lot, but bit operations are fast and a 15 second time limit generous.

Statistics: 45 submissions, 1 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 26 / 28

G - Safest Taxi

Problem

Given a road map of a city grid, including lane layouts, determine the
shortest amount of time to fulfill a trip using at most X left turns and Y
lane changes.

Solution

State-based Dijkstra.

State: street and direction, lane, number of left turns taken so far,
number of right turns taken so far.

Graph should have about O(NMKXY) vertices and slightly more
edges.

Following all rules correctly is the crux of the problem.

Statistics: 0 submissions, 0 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 27 / 28

G - Safest Taxi

Problem

Given a road map of a city grid, including lane layouts, determine the
shortest amount of time to fulfill a trip using at most X left turns and Y
lane changes.

Solution

State-based Dijkstra.

State: street and direction, lane, number of left turns taken so far,
number of right turns taken so far.

Graph should have about O(NMKXY) vertices and slightly more
edges.

Following all rules correctly is the crux of the problem.

Statistics: 0 submissions, 0 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 27 / 28

G - Safest Taxi

Problem

Given a road map of a city grid, including lane layouts, determine the
shortest amount of time to fulfill a trip using at most X left turns and Y
lane changes.

Solution

State-based Dijkstra.

State: street and direction, lane, number of left turns taken so far,
number of right turns taken so far.

Graph should have about O(NMKXY) vertices and slightly more
edges.

Following all rules correctly is the crux of the problem.

Statistics: 0 submissions, 0 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 27 / 28

G - Safest Taxi

Problem

Given a road map of a city grid, including lane layouts, determine the
shortest amount of time to fulfill a trip using at most X left turns and Y
lane changes.

Solution

State-based Dijkstra.

State: street and direction, lane, number of left turns taken so far,
number of right turns taken so far.

Graph should have about O(NMKXY) vertices and slightly more
edges.

Following all rules correctly is the crux of the problem.

Statistics: 0 submissions, 0 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 27 / 28

G - Safest Taxi

Problem

Given a road map of a city grid, including lane layouts, determine the
shortest amount of time to fulfill a trip using at most X left turns and Y
lane changes.

Solution

State-based Dijkstra.

State: street and direction, lane, number of left turns taken so far,
number of right turns taken so far.

Graph should have about O(NMKXY) vertices and slightly more
edges.

Following all rules correctly is the crux of the problem.

Statistics: 0 submissions, 0 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 27 / 28

G - Safest Taxi

Problem

Given a road map of a city grid, including lane layouts, determine the
shortest amount of time to fulfill a trip using at most X left turns and Y
lane changes.

Solution

State-based Dijkstra.

State: street and direction, lane, number of left turns taken so far,
number of right turns taken so far.

Graph should have about O(NMKXY) vertices and slightly more
edges.

Following all rules correctly is the crux of the problem.

Statistics: 0 submissions, 0 accepted.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 27 / 28

Questions? Comments? Concerns? Email Bryce Sandlund:
bcsandlund@gmail.com.

Problem Author: Rongqi Qiu NCNA 2020-21 Solution Slides 28 / 28

	Introduction

